--- license: apache-2.0 tags: - pruned - python - optimized - wanda base_model: LGAI-EXAONE/EXAONE-4.0-1.2B pipeline_tag: text-generation --- # EXAONE-4.0-1.2B-python-aggressive > 🎯 **PYTHON-optimized** | 📦 **Aggressive** pruning | ⚡ **30% weights pruned** This model is a **aggressively pruned** version of [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 76.9% | 61.5% ⭐ | ↓ 15.4% | | Html | 20.0% | 10.0% | ↓ 10.0% | | Trivia | 86.7% | 53.3% | ↓ 33.3% | | Math | 80.0% | 93.3% | ↑ 13.3% | | Reasoning | 75.0% | 50.0% | ↓ 25.0% | | Medical | 42.9% | 14.3% | ↓ 28.6% | | Linux | 23.1% | 23.1% | → | | Writing | 54.5% | 0.0% | ↓ 54.5% | **Average**: 57.4% → 38.2% (-19.2%) **Python Retention**: 80.0% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/EXAONE-4.0-1.2B-python-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [LGAI-EXAONE/EXAONE-4.0-1.2B](https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-1.2B) | | Specialization | Python | | Prune Mode | Aggressive | | Weight Reduction | 30% weights pruned | ## License This model inherits the license from the base model.