--- license: apache-2.0 tags: - pruned - python - optimized - wanda base_model: Qwen/Qwen2.5-3B-Instruct pipeline_tag: text-generation --- # Qwen2.5-3B-Instruct-python-aggressive > 🎯 **PYTHON-optimized** | 📦 **Aggressive** pruning | ⚡ **35% weights pruned** This model is a **aggressively pruned** version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct). ## Performance Comparison | Category | Original | Pruned | Change | |----------|----------|--------|--------| | **Python** | 92.3% | 84.6% ⭐ | ↓ 7.7% | | Html | 40.0% | 30.0% | ↓ 10.0% | | Trivia | 100.0% | 86.7% | ↓ 13.3% | | Math | 100.0% | 100.0% | → | | Reasoning | 91.7% | 83.3% | ↓ 8.3% | | Medical | 64.3% | 35.7% | ↓ 28.6% | | Linux | 69.2% | 61.5% | ↓ 7.7% | | Writing | 54.5% | 36.4% | ↓ 18.2% | **Average**: 76.5% → 64.8% (-11.7%) **Python Retention**: 91.7% ![Comparison Graph](comparison_graph.png) ## Quick Start ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-aggressive") tokenizer = AutoTokenizer.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-aggressive") inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Technical Details | Property | Value | |----------|-------| | Base Model | [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | | Specialization | Python | | Prune Mode | Aggressive | | Weight Reduction | 35% weights pruned | ## License This model inherits the license from the base model.