|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ScienceQA loading script.""" |
|
|
|
|
|
|
|
|
import json |
|
|
from pathlib import Path |
|
|
import os |
|
|
|
|
|
import datasets |
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
|
@inproceedings{lu2022learn, |
|
|
title={Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering}, |
|
|
author={Lu, Pan and Mishra, Swaroop and Xia, Tony and Qiu, Liang and Chang, Kai-Wei and Zhu, Song-Chun and Tafjord, Oyvind and Clark, Peter and Ashwin Kalyan}, |
|
|
booktitle={The 36th Conference on Neural Information Processing Systems (NeurIPS)}, |
|
|
year={2022} |
|
|
} |
|
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
This is the ScienceQA dataset. |
|
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://scienceqa.github.io/" |
|
|
|
|
|
_LICENSE = "CC BY-NC-SA (Attribution-NonCommercial-ShareAlike)" |
|
|
|
|
|
_URLS = { |
|
|
"pid_splits": "https://drive.google.com/uc?id=1OXlNBuW74dsrwYZIpQMshFqxkjcMPPgV&export=download", |
|
|
"problems": "https://drive.google.com/uc?id=1nJ86OLnF2C6eDoi5UOAdTAS5Duc0wuTl&export=download", |
|
|
"train": "https://drive.google.com/uc?id=1swX4Eei1ZqrXRvM-JAZxN6QVwcBLPHV8&export=download", |
|
|
"val": "https://drive.google.com/uc?id=1ijThWZc1tsoqGrOCWhYYj1HUJ48Hl8Zz&export=download", |
|
|
"test": "https://drive.google.com/uc?id=1eyjFaHxbvEJZzdZILn3vnTihBNDmKcIj&export=download", |
|
|
} |
|
|
|
|
|
_SUB_FOLDER_OR_FILE_NAME = { |
|
|
"pid_splits": "pid_splits.json", |
|
|
"problems": "problems.json", |
|
|
"train": "train", |
|
|
"val": "val", |
|
|
"test": "test", |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
JZ_FOLDER_PATH = { |
|
|
"pid_splits": "/gpfswork/rech/cnw/urd43gx/ScienceQA/pid_splits.json", |
|
|
"problems": "/gpfswork/rech/cnw/urd43gx/ScienceQA/problems.json", |
|
|
} |
|
|
|
|
|
|
|
|
class ScienceQADataset(datasets.GeneratorBasedBuilder): |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self): |
|
|
features = datasets.Features( |
|
|
{ |
|
|
"question": datasets.Value("string"), |
|
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
|
"answer": datasets.Value("int32"), |
|
|
"hint": datasets.Value("string"), |
|
|
"image": datasets.Image(), |
|
|
"task": datasets.Value("string"), |
|
|
"grade": datasets.Value("string"), |
|
|
"subject": datasets.Value("string"), |
|
|
"topic": datasets.Value("string"), |
|
|
"category": datasets.Value("string"), |
|
|
"skill": datasets.Value("string"), |
|
|
"lecture": datasets.Value("string"), |
|
|
"solution": datasets.Value("string"), |
|
|
"split": datasets.Value("string"), |
|
|
} |
|
|
) |
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=features, |
|
|
homepage=_HOMEPAGE, |
|
|
license=_LICENSE, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
data_dir = dl_manager.download_and_extract(_URLS) |
|
|
gen_kwargs = {} |
|
|
for split_name in ["train", "val", "test"]: |
|
|
gen_kwargs_per_split = {} |
|
|
gen_kwargs_per_split["pid_splits_path"] = Path(data_dir["pid_splits"]) / _SUB_FOLDER_OR_FILE_NAME["pid_splits"] |
|
|
gen_kwargs_per_split["problems_path"] = Path(data_dir["problems"]) / _SUB_FOLDER_OR_FILE_NAME["problems"] |
|
|
gen_kwargs_per_split["images_path"] = Path(data_dir[split_name]) / _SUB_FOLDER_OR_FILE_NAME[split_name] |
|
|
gen_kwargs_per_split["split_name"] = split_name |
|
|
gen_kwargs[split_name] = gen_kwargs_per_split |
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs=gen_kwargs["train"], |
|
|
), |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.VALIDATION, |
|
|
gen_kwargs=gen_kwargs["val"], |
|
|
), |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TEST, |
|
|
gen_kwargs=gen_kwargs["test"], |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, pid_splits_path, problems_path, images_path, split_name): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pid_splits = json.load(open(JZ_FOLDER_PATH["pid_splits"], "r")) |
|
|
problems = json.load(open(JZ_FOLDER_PATH["problems"], "r")) |
|
|
|
|
|
for idx, key in enumerate(pid_splits[split_name]): |
|
|
example = problems[key] |
|
|
if example["image"]: |
|
|
example["image"] = os.path.join(images_path, key, example["image"]) |
|
|
yield idx, example |
|
|
|