File size: 4,270 Bytes
1621431
bdc6124
72127e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdc6124
 
 
 
 
 
3260841
1621431
8b2c806
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c9733
8b2c806
 
 
 
 
 
 
 
 
 
 
54c9733
835bec6
aa0da88
 
 
97aa872
bdc6124
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
license: cc-by-4.0
dataset_info:
  features:
  - name: segment_id
    dtype: string
  - name: audio
    dtype:
      audio:
        decode: false
  - name: duration_seconds
    dtype: int64
  - name: segment_text
    dtype: string
  - name: cs_terms_list
    dtype: string
  - name: cs_terms_count
    dtype: int64
  - name: topic
    dtype: string
  - name: original_video_link
    dtype: string
  - name: original_video_title
    dtype: string
  - name: start_time
    dtype: string
  - name: end_time
    dtype: string
  splits:
  - name: train
    num_bytes: 14582022075
    num_examples: 11832
  - name: validation
    num_bytes: 2139515036
    num_examples: 1714
  - name: test
    num_bytes: 2026901460
    num_examples: 1614
  - name: hard
    num_bytes: 814798996
    num_examples: 658
  download_size: 18312886260
  dataset_size: 19563237567
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
  - split: hard
    path: data/hard-*
task_categories:
- automatic-speech-recognition
language:
- vi
tags:
- medical
- code-switching
---
# 🩺 ViMedCSS: Vietnamese Medical Code-Switching Speech Dataset

## 📖 Overview
ViMedCSS is a Vietnamese medical speech dataset for code-switching ASR, where each utterance contains at least one non-Vietnamese (mainly English) medical term embedded in Vietnamese speech.

## 📊 Dataset Statistics
### Split Statistics (from `ViMedCSS-Metadata`)
| Split | # Rows | Duration (hours) | Avg duration (s) | Total CS terms |
|---|---:|---:|---:|---:|
| train | 11,832 | 24.30 | 7.39 | 12,314 |
| validation | 1,714 | 3.57 | 7.49 | 1,814 |
| test | 1,614 | 3.39 | 7.56 | 1,695 |
| hard | 658 | 1.38 | 7.57 | 758 |
| **Total** | **15,818** | **32.64** | **7.43** | **16,581** |

### Topic Statistics (from `ViMedCSS-Metadata`)
| Topic | # Rows | Duration (hours) | Total CS terms |
|---|---:|---:|---:|
| Medical Sciences | 6,836 | 14.68 | 7,459 |
| Pathology & Pathogens | 4,827 | 10.00 | 4,951 |
| Treatments | 1,969 | 3.80 | 1,985 |
| Nutrition | 1,155 | 2.14 | 1,155 |
| Diagnostics | 1,031 | 2.02 | 1,031 |

## 🧾 Data Fields
Each row in metadata corresponds to one segment audio file, where:
- `segment_id` maps to `segment_id.wav` (for example: `Med_CS-100-17` -> `Med_CS-100-17.wav`)

Main fields:
- `segment_id`: utterance identifier
- `duration_seconds`: utterance duration
- `segment_text`: Vietnamese transcript containing code-switched term(s)
- `cs_terms_list`: semicolon-separated code-switched terms
- `cs_terms_count`: number of code-switched terms in the utterance
- `topic` (or `Topic` in one CSV): medical topic label
- `original_video_link`: source video URL
- `original_video_title`: source video title
- `start_time`, `end_time`: segment boundaries in source audio/video

When loaded from Hugging Face, an `audio` column is available with waveform bytes/path in the standard 🤗 Datasets `Audio` format.

## 🔽 How to Load
Load directly with 🤗 Datasets:

```python
from datasets import load_dataset

dataset = load_dataset("tensorxt/ViMedCSS")
print(dataset)
```

Clone with Git LFS:

```bash
git lfs install
git clone https://huggingface.co/datasets/tensorxt/ViMedCSS
```

## 📝 Notes
- The paper reports the full corpus statistics (34.57h).
- The `hard` split is intended for evaluating rare/unseen code-switched medical terms, following the paper’s benchmark setup.

## 📜 License
The paper states that data are collected from publicly available YouTube content for research purposes, and the medical dictionary resource used in construction is under institutional intellectual property licensing.

Please verify usage rights for your setting before redistribution or commercial use.

## 🙏 Citation
If you use ViMedCSS, please cite:

```bibtex
@inproceedings{nguyen-etal-2026-vimedcss,
    title = "{V}i{M}ed{CSS}: A Vietnamese Medical Code-Switching Speech Dataset \& Benchmark",
    author = "Tung X. Nguyen, Nhu Vo, Giang-Son Nguyen, Duy Mai Hoang, Chien Dinh Huynh, Inigo Jauregi Unanue, Massimo Piccardi, Wray Buntine, Dung D. Le",
    booktitle = "Proceedings of the 2026 Language Resources and Evaluation Conference (LREC 2026)",
    year = "2026",
}
```