--- license: cc-by-4.0 dataset_info: features: - name: segment_id dtype: string - name: audio dtype: audio: decode: false - name: duration_seconds dtype: int64 - name: segment_text dtype: string - name: cs_terms_list dtype: string - name: cs_terms_count dtype: int64 - name: topic dtype: string - name: original_video_link dtype: string - name: original_video_title dtype: string - name: start_time dtype: string - name: end_time dtype: string splits: - name: train num_bytes: 14582022075 num_examples: 11832 - name: validation num_bytes: 2139515036 num_examples: 1714 - name: test num_bytes: 2026901460 num_examples: 1614 - name: hard num_bytes: 814798996 num_examples: 658 download_size: 18312886260 dataset_size: 19563237567 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - split: hard path: data/hard-* task_categories: - automatic-speech-recognition language: - vi tags: - medical - code-switching --- # 🩺 ViMedCSS: A Vietnamese Medical Code-Switching Speech Dataset (LREC 2026) ## πŸ“– Overview ViMedCSS is a Vietnamese medical speech dataset for code-switching ASR, where each utterance contains at least one non-Vietnamese (mainly English) medical term embedded in Vietnamese speech. ## πŸ“Š Dataset Statistics ### Split Statistics (from `ViMedCSS-Metadata`) | Split | # Rows | Duration (hours) | Avg duration (s) | Total CS terms | |---|---:|---:|---:|---:| | train | 11,832 | 24.30 | 7.39 | 12,314 | | validation | 1,714 | 3.57 | 7.49 | 1,814 | | test | 1,614 | 3.39 | 7.56 | 1,695 | | hard | 658 | 1.38 | 7.57 | 758 | | **Total** | **15,818** | **32.64** | **7.43** | **16,581** | ### Topic Statistics (from `ViMedCSS-Metadata`) | Topic | # Rows | Duration (hours) | Total CS terms | |---|---:|---:|---:| | Medical Sciences | 6,836 | 14.68 | 7,459 | | Pathology & Pathogens | 4,827 | 10.00 | 4,951 | | Treatments | 1,969 | 3.80 | 1,985 | | Nutrition | 1,155 | 2.14 | 1,155 | | Diagnostics | 1,031 | 2.02 | 1,031 | ## 🧾 Data Fields Each row in metadata corresponds to one segment audio file, where: - `segment_id` maps to `segment_id.wav` (for example: `Med_CS-100-17` -> `Med_CS-100-17.wav`) Main fields: - `segment_id`: utterance identifier - `duration_seconds`: utterance duration - `segment_text`: Vietnamese transcript containing code-switched term(s) - `cs_terms_list`: semicolon-separated code-switched terms - `cs_terms_count`: number of code-switched terms in the utterance - `topic` (or `Topic` in one CSV): medical topic label - `original_video_link`: source video URL - `original_video_title`: source video title - `start_time`, `end_time`: segment boundaries in source audio/video When loaded from Hugging Face, an `audio` column is available with waveform bytes/path in the standard πŸ€— Datasets `Audio` format. ## πŸ”½ How to Load Load directly with πŸ€— Datasets: ```python from datasets import load_dataset dataset = load_dataset("tensorxt/ViMedCSS") print(dataset) ``` Clone with Git LFS: ```bash git lfs install git clone https://huggingface.co/datasets/tensorxt/ViMedCSS ``` ## πŸ“ Notes - The paper reports the full corpus statistics (34.57h). - The `hard` split is intended for evaluating rare/unseen code-switched medical terms, following the paper’s benchmark setup. ## πŸ“œ License The paper states that data are collected from publicly available YouTube content for research purposes, and the medical dictionary resource used in construction is under institutional intellectual property licensing. Please verify usage rights for your setting before redistribution or commercial use. ## πŸ™ Citation If you use ViMedCSS, please cite the paper: https://arxiv.org/abs/2602.12911 ```bibtex @inproceedings{nguyen-etal-2026-vimedcss, title = "{V}i{M}ed{CSS}: A Vietnamese Medical Code-Switching Speech Dataset \& Benchmark", author = "Tung X. Nguyen, Nhu Vo, Giang-Son Nguyen, Duy Mai Hoang, Chien Dinh Huynh, Inigo Jauregi Unanue, Massimo Piccardi, Wray Buntine, Dung D. Le", booktitle = "Proceedings of the 2026 Language Resources and Evaluation Conference (LREC 2026)", year = "2026", } ```