davanstrien HF Staff commited on
Commit
2a3a1cc
·
1 Parent(s): 14544c7

Handle both 'label' and 'labels' column names in datasets

Browse files
Files changed (1) hide show
  1. train-image-classifier.py +16 -12
train-image-classifier.py CHANGED
@@ -210,23 +210,26 @@ def _(dataset_name, mo):
210
  from datasets import load_dataset
211
 
212
  print(f"Loading dataset: {dataset_name}...")
213
- dataset = load_dataset(dataset_name, trust_remote_code=True)
214
  print(f"Train: {len(dataset['train']):,} samples")
215
  print(f"Test: {len(dataset['test']):,} samples")
216
 
217
- # Get label info
218
- label_feature = dataset["train"].features["label"]
 
 
219
  labels = label_feature.names if hasattr(label_feature, "names") else None
220
- num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"]["label"]))
221
 
 
222
  print(f"Labels ({num_labels}): {labels}")
223
 
224
  mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**")
225
- return dataset, labels, num_labels
226
 
227
 
228
  @app.cell
229
- def _(dataset, labels, mo):
230
  # Show sample images (notebook mode only)
231
  import base64 as _base64
232
  from io import BytesIO as _BytesIO
@@ -245,7 +248,7 @@ def _(dataset, labels, mo):
245
  _images_html = []
246
  for _sample in _samples:
247
  _img_b64 = _image_to_base64(_sample["image"])
248
- _label_name = labels[_sample["label"]] if labels else _sample["label"]
249
  _images_html.append(
250
  f"""
251
  <div style="text-align: center; margin: 5px;">
@@ -311,12 +314,12 @@ def _(mo):
311
 
312
 
313
  @app.cell
314
- def _(dataset, image_processor):
315
  def preprocess(examples):
316
  """Apply image processor to batch of images."""
317
  images = [img.convert("RGB") for img in examples["image"]]
318
  inputs = image_processor(images, return_tensors="pt")
319
- inputs["label"] = examples["label"]
320
  return inputs
321
 
322
  print("Preprocessing dataset...")
@@ -418,7 +421,7 @@ def _(trainer):
418
 
419
 
420
  @app.cell
421
- def _(dataset, id2label, image_processor, mo, model):
422
  import torch
423
  import base64 as _b64
424
  from io import BytesIO as _BIO
@@ -436,9 +439,10 @@ def _(dataset, id2label, image_processor, mo, model):
436
  _outputs = model(**_inputs)
437
  _pred_idx = _outputs.logits.argmax(-1).item()
438
 
439
- _true_label = id2label[_sample["label"]] if id2label else _sample["label"]
 
440
  _pred_label = id2label[_pred_idx] if id2label else _pred_idx
441
- _correct = "correct" if _pred_idx == _sample["label"] else "wrong"
442
 
443
  # Convert image for display
444
  _img_copy = _img.copy()
 
210
  from datasets import load_dataset
211
 
212
  print(f"Loading dataset: {dataset_name}...")
213
+ dataset = load_dataset(dataset_name)
214
  print(f"Train: {len(dataset['train']):,} samples")
215
  print(f"Test: {len(dataset['test']):,} samples")
216
 
217
+ # Get label column name (datasets use 'label' or 'labels')
218
+ _features = dataset["train"].features
219
+ label_column = "label" if "label" in _features else "labels"
220
+ label_feature = _features[label_column]
221
  labels = label_feature.names if hasattr(label_feature, "names") else None
222
+ num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"][label_column]))
223
 
224
+ print(f"Label column: '{label_column}'")
225
  print(f"Labels ({num_labels}): {labels}")
226
 
227
  mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**")
228
+ return dataset, label_column, labels, num_labels
229
 
230
 
231
  @app.cell
232
+ def _(dataset, label_column, labels, mo):
233
  # Show sample images (notebook mode only)
234
  import base64 as _base64
235
  from io import BytesIO as _BytesIO
 
248
  _images_html = []
249
  for _sample in _samples:
250
  _img_b64 = _image_to_base64(_sample["image"])
251
+ _label_name = labels[_sample[label_column]] if labels else _sample[label_column]
252
  _images_html.append(
253
  f"""
254
  <div style="text-align: center; margin: 5px;">
 
314
 
315
 
316
  @app.cell
317
+ def _(dataset, image_processor, label_column):
318
  def preprocess(examples):
319
  """Apply image processor to batch of images."""
320
  images = [img.convert("RGB") for img in examples["image"]]
321
  inputs = image_processor(images, return_tensors="pt")
322
+ inputs["labels"] = examples[label_column] # Trainer expects 'labels'
323
  return inputs
324
 
325
  print("Preprocessing dataset...")
 
421
 
422
 
423
  @app.cell
424
+ def _(dataset, id2label, image_processor, label_column, mo, model):
425
  import torch
426
  import base64 as _b64
427
  from io import BytesIO as _BIO
 
439
  _outputs = model(**_inputs)
440
  _pred_idx = _outputs.logits.argmax(-1).item()
441
 
442
+ _true_idx = _sample[label_column]
443
+ _true_label = id2label[_true_idx] if id2label else _true_idx
444
  _pred_label = id2label[_pred_idx] if id2label else _pred_idx
445
+ _correct = "correct" if _pred_idx == _true_idx else "wrong"
446
 
447
  # Convert image for display
448
  _img_copy = _img.copy()