# /// script # requires-python = ">=3.10" # dependencies = [ # "marimo", # "datasets", # "transformers", # "torch", # "torchvision", # "huggingface-hub", # "evaluate", # "accelerate", # "scikit-learn", # ] # /// """ Train an Image Classifier This marimo notebook fine-tunes a Vision Transformer (ViT) for image classification. Two ways to run: - Tutorial: uvx marimo edit --sandbox train-image-classifier.py - Script: uv run train-image-classifier.py --dataset beans --output-repo user/my-model On HF Jobs (GPU): hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \ https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \ -- --dataset beans --output-repo user/beans-vit --epochs 5 """ import marimo __generated_with = "0.19.6" app = marimo.App(width="medium") @app.cell def _(): import marimo as mo return (mo,) @app.cell def _(mo): mo.md(""" # Train an Image Classifier This notebook fine-tunes a Vision Transformer (ViT) for image classification. **Two ways to run:** - **Tutorial**: `uvx marimo edit --sandbox train-image-classifier.py` - **Script**: `uv run train-image-classifier.py --dataset beans --output-repo user/my-model` The same code powers both experiences! """) return @app.cell def _(mo): mo.md(""" ## Running on HF Jobs (GPU) This notebook can run on [Hugging Face Jobs](https://huggingface.co/docs/hub/jobs) for GPU training. No local GPU needed - just run: ```bash hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\ https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\ -- --dataset beans --output-repo your-username/beans-vit --epochs 5 --push-to-hub ``` **GPU Flavors:** | Flavor | GPU | VRAM | Best for | |--------|-----|------|----------| | `l4x1` | L4 | 24GB | Most fine-tuning tasks | | `a10gx1` | A10G | 24GB | Slightly faster than L4 | | `a100x1` | A100 | 40GB | Large models, big batches | **Key flags:** - `--secrets HF_TOKEN` - Passes your HF token for pushing models - `--` - Separates `hf jobs` args from script args - `--push-to-hub` - Actually pushes the model (otherwise just saves locally) **Tip:** Start with `beans` dataset and 1-3 epochs to test, then scale up! """) return @app.cell def _(mo): mo.md(""" ## Step 1: Configuration Set up training parameters. In interactive mode, use the controls below. In script mode, pass command-line arguments. """) return @app.cell def _(mo): import argparse # Parse CLI args (works in both modes) parser = argparse.ArgumentParser(description="Fine-tune ViT for image classification") parser.add_argument( "--dataset", default="beans", help="HF dataset name (must be image classification dataset)", ) parser.add_argument( "--model", default="google/vit-base-patch16-224-in21k", help="Pretrained model to fine-tune", ) parser.add_argument( "--output-repo", default=None, help="Where to push trained model (e.g., user/my-model)", ) parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs") parser.add_argument("--batch-size", type=int, default=16, help="Batch size") parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate") parser.add_argument( "--push-to-hub", action="store_true", default=False, help="Push model to Hub after training", ) args, _ = parser.parse_known_args() # Interactive controls (shown in notebook mode) dataset_input = mo.ui.text(value=args.dataset, label="Dataset") model_input = mo.ui.text(value=args.model, label="Model") output_input = mo.ui.text(value=args.output_repo or "", label="Output Repo") epochs_input = mo.ui.slider(1, 20, value=args.epochs, label="Epochs") batch_size_input = mo.ui.dropdown( options=["8", "16", "32", "64"], value=str(args.batch_size), label="Batch Size" ) lr_input = mo.ui.dropdown( options=["1e-5", "2e-5", "5e-5", "1e-4"], value=f"{args.lr:.0e}".replace("e-0", "e-"), label="Learning Rate", ) mo.vstack( [ mo.hstack([dataset_input, model_input]), mo.hstack([output_input]), mo.hstack([epochs_input, batch_size_input, lr_input]), ] ) return ( args, batch_size_input, dataset_input, epochs_input, lr_input, model_input, output_input, ) @app.cell def _( args, batch_size_input, dataset_input, epochs_input, lr_input, model_input, output_input, ): # Resolve values (interactive takes precedence) dataset_name = dataset_input.value or args.dataset model_name = model_input.value or args.model output_repo = output_input.value or args.output_repo num_epochs = epochs_input.value or args.epochs batch_size = int(batch_size_input.value) if batch_size_input.value else args.batch_size learning_rate = float(lr_input.value) if lr_input.value else args.lr print("Configuration:") print(f" Dataset: {dataset_name}") print(f" Model: {model_name}") print(f" Output: {output_repo or '(not pushing to Hub)'}") print(f" Epochs: {num_epochs}, Batch Size: {batch_size}, LR: {learning_rate}") return ( batch_size, dataset_name, learning_rate, model_name, num_epochs, output_repo, ) @app.cell def _(mo): mo.md(""" ## Step 2: Load Dataset We'll load an image classification dataset from the Hub. The `beans` dataset is small (~1000 images) and trains quickly - perfect for learning! """) return @app.cell def _(dataset_name, mo): from datasets import load_dataset print(f"Loading dataset: {dataset_name}...") dataset = load_dataset(dataset_name) print(f"Train: {len(dataset['train']):,} samples") print(f"Test: {len(dataset['test']):,} samples") # Get label column name (datasets use 'label' or 'labels') _features = dataset["train"].features label_column = "label" if "label" in _features else "labels" label_feature = _features[label_column] labels = label_feature.names if hasattr(label_feature, "names") else None num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"][label_column])) print(f"Label column: '{label_column}'") print(f"Labels ({num_labels}): {labels}") mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**") return dataset, label_column, labels, num_labels @app.cell def _(dataset, label_column, labels, mo): # Show sample images (notebook mode only) import base64 as _base64 from io import BytesIO as _BytesIO def _image_to_base64(img, max_size=150): """Convert PIL image to base64 for HTML display.""" _img_copy = img.copy() _img_copy.thumbnail((max_size, max_size)) _buffered = _BytesIO() _img_copy.save(_buffered, format="PNG") return _base64.b64encode(_buffered.getvalue()).decode() # Get 6 sample images with different labels _samples = dataset["train"].shuffle(seed=42).select(range(6)) _images_html = [] for _sample in _samples: _img_b64 = _image_to_base64(_sample["image"]) _label_name = labels[_sample[label_column]] if labels else _sample[label_column] _images_html.append( f"""

{_label_name}
""" ) mo.md(f""" ### Sample Images
{"".join(_images_html)}
""") return @app.cell def _(mo): mo.md(""" ## Step 3: Prepare Model and Processor We load a pretrained Vision Transformer and its image processor. The processor handles resizing and normalization to match the model's training. """) return @app.cell def _(labels, model_name, num_labels): from transformers import AutoImageProcessor, AutoModelForImageClassification print(f"Loading model: {model_name}...") # Load image processor image_processor = AutoImageProcessor.from_pretrained(model_name) print(f"Image size: {image_processor.size}") # Load model with correct number of labels label2id = {label: i for i, label in enumerate(labels)} if labels else None id2label = {i: label for i, label in enumerate(labels)} if labels else None model = AutoModelForImageClassification.from_pretrained( model_name, num_labels=num_labels, label2id=label2id, id2label=id2label, ignore_mismatched_sizes=True, # Classification head will be different ) print(f"Model loaded with {num_labels} output classes") return id2label, image_processor, model @app.cell def _(mo): mo.md(""" ## Step 4: Preprocess Data Apply the image processor to convert images into tensors suitable for the model. """) return @app.cell def _(dataset, image_processor, label_column): def preprocess(examples): """Apply image processor to batch of images.""" images = [img.convert("RGB") for img in examples["image"]] inputs = image_processor(images, return_tensors="pt") inputs["labels"] = examples[label_column] # Trainer expects 'labels' return inputs print("Preprocessing dataset...") processed_dataset = dataset.with_transform(preprocess) print("Preprocessing complete (transforms applied lazily)") return (processed_dataset,) @app.cell def _(mo): mo.md(""" ## Step 5: Training We use the Hugging Face Trainer for a clean training loop with built-in logging. """) return @app.cell def _( batch_size, learning_rate, model, num_epochs, output_repo, processed_dataset, ): import evaluate import numpy as np from transformers import Trainer, TrainingArguments # Load accuracy metric accuracy_metric = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy_metric.compute(predictions=predictions, references=labels) # Training arguments training_args = TrainingArguments( output_dir="./image-classifier-output", num_train_epochs=num_epochs, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, learning_rate=learning_rate, eval_strategy="epoch", save_strategy="epoch", logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=bool(output_repo), hub_model_id=output_repo if output_repo else None, remove_unused_columns=False, # Keep image column for transforms report_to="none", # Disable wandb/tensorboard for simplicity ) # Create trainer trainer = Trainer( model=model, args=training_args, train_dataset=processed_dataset["train"], eval_dataset=processed_dataset["test"], compute_metrics=compute_metrics, ) print(f"Starting training for {num_epochs} epochs...") return (trainer,) @app.cell def _(trainer): # Run training train_result = trainer.train() print("\nTraining complete!") print(f" Total steps: {train_result.global_step}") print(f" Training loss: {train_result.training_loss:.4f}") return @app.cell def _(mo): mo.md(""" ## Step 6: Evaluation Let's see how well our model performs on the test set. """) return @app.cell def _(trainer): # Evaluate on test set eval_results = trainer.evaluate() print("\nEvaluation Results:") print(f" Accuracy: {eval_results['eval_accuracy']:.2%}") print(f" Loss: {eval_results['eval_loss']:.4f}") return @app.cell def _(dataset, id2label, image_processor, label_column, mo, model): import torch import base64 as _b64 from io import BytesIO as _BIO # Show some predictions (notebook mode) model.eval() _test_samples = dataset["test"].shuffle(seed=42).select(range(4)) _prediction_html = [] for _sample in _test_samples: _img = _sample["image"].convert("RGB") _inputs = image_processor(_img, return_tensors="pt") with torch.no_grad(): _outputs = model(**_inputs) _pred_idx = _outputs.logits.argmax(-1).item() _true_idx = _sample[label_column] _true_label = id2label[_true_idx] if id2label else _true_idx _pred_label = id2label[_pred_idx] if id2label else _pred_idx _correct = "correct" if _pred_idx == _true_idx else "wrong" # Convert image for display _img_copy = _img.copy() _img_copy.thumbnail((120, 120)) _buffered = _BIO() _img_copy.save(_buffered, format="PNG") _img_b64 = _b64.b64encode(_buffered.getvalue()).decode() _border_color = "#4ade80" if _correct == "correct" else "#f87171" _prediction_html.append( f"""

True: {_true_label}
Pred: {_pred_label}
""" ) mo.md(f""" ### Sample Predictions
{"".join(_prediction_html)}
Green border = correct, Red border = wrong """) return @app.cell def _(mo): mo.md(""" ## Step 7: Push to Hub If you specified `--output-repo`, the model will be pushed to the Hugging Face Hub. """) return @app.cell def _(args, output_repo, trainer): if output_repo and args.push_to_hub: print(f"Pushing model to: https://huggingface.co/{output_repo}") trainer.push_to_hub() print("Model pushed successfully!") elif output_repo: print("Model saved locally. To push to Hub, add --push-to-hub flag.") print(" Or run: trainer.push_to_hub()") else: print("No output repo specified. Model saved locally to ./image-classifier-output") print("To push to Hub, run with: --output-repo your-username/model-name --push-to-hub") return @app.cell def _(mo): mo.md(""" ## Next Steps ### Try different datasets - `food101` - 101 food categories (75k train images) - `cifar10` - 10 classes of objects (50k train images) - `oxford_flowers102` - 102 flower species - `fashion_mnist` - Clothing items (grayscale) ### Try different models - `microsoft/resnet-50` - Classic CNN architecture - `facebook/deit-base-patch16-224` - Data-efficient ViT - `google/vit-large-patch16-224` - Larger ViT (needs more VRAM) ### Scale up with HF Jobs ```bash # Train on food101 with more epochs hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\ https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\ -- --dataset food101 --epochs 10 --batch-size 32 \\ --output-repo your-username/food101-vit --push-to-hub ``` **More UV scripts**: [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts) """) return if __name__ == "__main__": app.run()