---
license: bigcode-openrail-m
base_model: bigcode/starcoder2-15b-instruct-v0.1
tags:
- security
- cybersecurity
- secure-coding
- ai-security
- owasp
- code-generation
- qlora
- lora
- fine-tuned
- securecode
datasets:
- scthornton/securecode
library_name: peft
pipeline_tag: text-generation
language:
- code
- en
---
# StarCoder2 15B SecureCode




**Security-specialized code model fine-tuned on the [SecureCode](https://huggingface.co/datasets/scthornton/securecode) dataset**
[Dataset](https://huggingface.co/datasets/scthornton/securecode) | [Paper (arXiv:2512.18542)](https://arxiv.org/abs/2512.18542) | [Model Collection](https://huggingface.co/collections/scthornton/securecode) | [perfecXion.ai](https://perfecxion.ai)
---
## What This Model Does
This model generates **secure code** when developers ask about building features. Instead of producing vulnerable implementations (like 45% of AI-generated code does), it:
- Identifies the security risks in common coding patterns
- Provides vulnerable *and* secure implementations side by side
- Explains how attackers would exploit the vulnerability
- Includes defense-in-depth guidance: logging, monitoring, SIEM integration, infrastructure hardening
The model was fine-tuned on **2,185 security training examples** covering both traditional web security (OWASP Top 10 2021) and AI/ML security (OWASP LLM Top 10 2025).
## Model Details
| | |
|---|---|
| **Base Model** | [StarCoder2 15B Instruct](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1) |
| **Parameters** | 15B |
| **Architecture** | StarCoder2 |
| **Tier** | Tier 3: Large Model |
| **Method** | QLoRA (4-bit NormalFloat quantization) |
| **LoRA Rank** | 16 (alpha=32) |
| **Target Modules** | `q_proj, k_proj, v_proj, o_proj` (4 modules) |
| **Training Data** | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) (2,185 examples) |
| **Hardware** | NVIDIA A100 40GB |
BigCode's flagship model trained on The Stack v2. Broad language coverage with strong code understanding.
## Quick Start
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load with 4-bit quantization (matches training)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
"bigcode/starcoder2-15b-instruct-v0.1",
quantization_config=bnb_config,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("scthornton/starcoder2-15b-securecode")
model = PeftModel.from_pretrained(base_model, "scthornton/starcoder2-15b-securecode")
# Ask a security-relevant coding question
messages = [
{"role": "user", "content": "How do I implement JWT authentication with refresh tokens in Python?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=2048, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Training Details
### Dataset
Trained on the full **[SecureCode](https://huggingface.co/datasets/scthornton/securecode)** unified dataset:
- **2,185 total examples** (1,435 web security + 750 AI/ML security)
- **20 vulnerability categories** across OWASP Top 10 2021 and OWASP LLM Top 10 2025
- **12+ programming languages** and **49+ frameworks**
- **4-turn conversational structure**: feature request, vulnerable/secure implementations, advanced probing, operational guidance
- **100% incident grounding**: every example tied to real CVEs, vendor advisories, or published attack research
### Hyperparameters
| Parameter | Value |
|-----------|-------|
| LoRA rank | 16 |
| LoRA alpha | 32 |
| LoRA dropout | 0.05 |
| Target modules | 4 linear layers |
| Quantization | 4-bit NormalFloat (NF4) |
| Learning rate | 2e-4 |
| LR scheduler | Cosine with 100-step warmup |
| Epochs | 3 |
| Per-device batch size | 1 |
| Gradient accumulation | 16x |
| Effective batch size | 16 |
| Max sequence length | 4096 tokens |
| Optimizer | paged_adamw_8bit |
| Precision | bf16 |
**Notes:** Compact LoRA targeting attention layers only (4 modules). Tight A100 40GB memory budget.
## Security Coverage
### Web Security (1,435 examples)
OWASP Top 10 2021: Broken Access Control, Cryptographic Failures, Injection, Insecure Design, Security Misconfiguration, Vulnerable Components, Authentication Failures, Software Integrity Failures, Logging/Monitoring Failures, SSRF.
Languages: Python, JavaScript, Java, Go, PHP, C#, TypeScript, Ruby, Rust, Kotlin, YAML.
### AI/ML Security (750 examples)
OWASP LLM Top 10 2025: Prompt Injection, Sensitive Information Disclosure, Supply Chain Vulnerabilities, Data/Model Poisoning, Improper Output Handling, Excessive Agency, System Prompt Leakage, Vector/Embedding Weaknesses, Misinformation, Unbounded Consumption.
Frameworks: LangChain, OpenAI, Anthropic, HuggingFace, LlamaIndex, ChromaDB, Pinecone, FastAPI, Flask, vLLM, CrewAI, and 30+ more.
## SecureCode Model Collection
This model is part of the **SecureCode** collection of 8 security-specialized models:
| Model | Base | Size | Tier | HuggingFace |
|-------|------|------|------|-------------|
| Llama 3.2 SecureCode | meta-llama/Llama-3.2-3B-Instruct | 3B | Accessible | [`llama-3.2-3b-securecode`](https://huggingface.co/scthornton/llama-3.2-3b-securecode) |
| Qwen2.5 Coder SecureCode | Qwen/Qwen2.5-Coder-7B-Instruct | 7B | Mid-size | [`qwen2.5-coder-7b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-7b-securecode) |
| DeepSeek Coder SecureCode | deepseek-ai/deepseek-coder-6.7b-instruct | 6.7B | Mid-size | [`deepseek-coder-6.7b-securecode`](https://huggingface.co/scthornton/deepseek-coder-6.7b-securecode) |
| CodeGemma SecureCode | google/codegemma-7b-it | 7B | Mid-size | [`codegemma-7b-securecode`](https://huggingface.co/scthornton/codegemma-7b-securecode) |
| CodeLlama SecureCode | codellama/CodeLlama-13b-Instruct-hf | 13B | Large | [`codellama-13b-securecode`](https://huggingface.co/scthornton/codellama-13b-securecode) |
| Qwen2.5 Coder 14B SecureCode | Qwen/Qwen2.5-Coder-14B-Instruct | 14B | Large | [`qwen2.5-coder-14b-securecode`](https://huggingface.co/scthornton/qwen2.5-coder-14b-securecode) |
| StarCoder2 SecureCode | bigcode/starcoder2-15b-instruct-v0.1 | 15B | Large | [`starcoder2-15b-securecode`](https://huggingface.co/scthornton/starcoder2-15b-securecode) |
| Granite 20B Code SecureCode | ibm-granite/granite-20b-code-instruct-8k | 20B | XL | [`granite-20b-code-securecode`](https://huggingface.co/scthornton/granite-20b-code-securecode) |
Choose based on your deployment constraints: **3B** for edge/mobile, **7B** for general use, **13B-15B** for deeper reasoning, **20B** for maximum capability.
## SecureCode Dataset Family
| Dataset | Examples | Focus | Link |
|---------|----------|-------|------|
| **SecureCode** | 2,185 | Unified (web + AI/ML) | [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode) |
| SecureCode Web | 1,435 | Web security (OWASP Top 10 2021) | [scthornton/securecode-web](https://huggingface.co/datasets/scthornton/securecode-web) |
| SecureCode AI/ML | 750 | AI/ML security (OWASP LLM Top 10 2025) | [scthornton/securecode-aiml](https://huggingface.co/datasets/scthornton/securecode-aiml) |
## Intended Use
**Use this model for:**
- Training AI coding assistants to write secure code
- Security education and training
- Vulnerability research and secure code review
- Building security-aware development tools
**Do not use this model for:**
- Offensive exploitation or automated attack generation
- Circumventing security controls
- Any activity that violates the base model's license
## Citation
```bibtex
@misc{thornton2026securecode,
title={SecureCode: A Production-Grade Multi-Turn Dataset for Training Security-Aware Code Generation Models},
author={Thornton, Scott},
year={2026},
publisher={perfecXion.ai},
url={https://huggingface.co/datasets/scthornton/securecode},
note={arXiv:2512.18542}
}
```
## Links
- **Dataset**: [scthornton/securecode](https://huggingface.co/datasets/scthornton/securecode)
- **Research Paper**: [arXiv:2512.18542](https://arxiv.org/abs/2512.18542)
- **Model Collection**: [huggingface.co/collections/scthornton/securecode](https://huggingface.co/collections/scthornton/securecode)
- **Author**: [perfecXion.ai](https://perfecxion.ai)
## License
This model is released under the **bigcode-openrail-m** license (inherited from the base model). The training dataset ([SecureCode](https://huggingface.co/datasets/scthornton/securecode)) is licensed under **CC BY-NC-SA 4.0**.