Spaces:
Runtime error
Runtime error
File size: 17,082 Bytes
48975c7 e635ff3 5de336d e635ff3 7c690ea 6aed840 0cd60d0 e635ff3 fc07314 e635ff3 676b1ac e635ff3 0cd60d0 71cd01f 0cd60d0 e635ff3 ff74c34 e635ff3 491c0cd e635ff3 7c690ea 589afd6 7c690ea ff74c34 7c690ea ff74c34 7c690ea 7076fa3 7c690ea e635ff3 676b1ac e635ff3 8cdea10 e635ff3 b003e83 e635ff3 676b1ac e635ff3 676b1ac 6aed840 676b1ac 5de336d 676b1ac e635ff3 c91fc10 0cd60d0 e635ff3 7c690ea c91fc10 7c690ea 39c3455 7c690ea 491c0cd e635ff3 ff9c156 c91fc10 e635ff3 676b1ac e635ff3 c91fc10 e635ff3 39c3455 e635ff3 503b56b e635ff3 503b56b 491c0cd e635ff3 7e9613a e635ff3 676b1ac 8cdea10 676b1ac 8cdea10 676b1ac e635ff3 39c3455 e635ff3 7e9613a e635ff3 676b1ac e635ff3 676b1ac e635ff3 676b1ac e635ff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import spaces # Must be imported first for ZeroGPU
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from diffusers import FluxKontextPipeline, FluxImg2ImgPipeline
from diffusers.utils import load_image
from PIL import Image
import os
import gc
import numpy as np
import peft # Required for LoRA support
import io, base64, requests
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN", "")
# Style LoRA mapping
STYLE_TYPE_LORA_DICT = {
'None': "",
"3D_Chibi": "3D_Chibi_lora_weights.safetensors",
"American_Cartoon": "American_Cartoon_lora_weights.safetensors",
"Chinese_Ink": "Chinese_Ink_lora_weights.safetensors",
"Clay_Toy": "Clay_Toy_lora_weights.safetensors",
"Fabric": "Fabric_lora_weights.safetensors",
"Ghibli": "Ghibli_lora_weights.safetensors",
"Irasutoya": "Irasutoya_lora_weights.safetensors",
"Jojo": "Jojo_lora_weights.safetensors",
"Oil_Painting": "Oil_Painting_lora_weights.safetensors",
"Pixel": "Pixel_lora_weights.safetensors",
"Snoopy": "Snoopy_lora_weights.safetensors",
"Poly": "Poly_lora_weights.safetensors",
"LEGO": "LEGO_lora_weights.safetensors",
"Origami": "Origami_lora_weights.safetensors",
"Pop_Art": "Pop_Art_lora_weights.safetensors",
"Van_Gogh": "Van_Gogh_lora_weights.safetensors",
"Paper_Cutting": "Paper_Cutting_lora_weights.safetensors",
"Line": "Line_lora_weights.safetensors",
"Vector": "Vector_lora_weights.safetensors",
"Picasso": "Picasso_lora_weights.safetensors",
"Macaron": "Macaron_lora_weights.safetensors",
"Rick_Morty": "Rick_Morty_lora_weights.safetensors"
}
# Helper function to convert input image to PIL image
def _to_pil(x):
# Already a PIL image from the UI?
if isinstance(x, Image.Image):
return x.convert("RGB")
# Dict from API client: {"data": "<raw base64>", "name": "..."} or data URL
if isinstance(x, dict) and "data" in x:
b64 = x["data"]
# and b64.startswith("data:image")
if isinstance(b64, str):
b64 = b64.split(",", 1)[1]
return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
# String: could be URL, data URL, or server-side filepath
if isinstance(x, str):
if x.startswith("http://") or x.startswith("https://"):
r = requests.get(x, timeout=20)
r.raise_for_status()
return Image.open(io.BytesIO(r.content)).convert("RGB")
if x.startswith("data:image"):
b64 = x.split(",", 1)[1]
return Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
if os.path.exists(x):
return Image.open(x).convert("RGB")
raise ValueError("Unsupported image input. Provide a PIL image, filepath/URL, or {data: <base64>}.")
# Global variables for pipeline management
pipeline = None
current_lora = None
BACKGROUND_LORA_REPO = "peteromallet/Flux-Kontext-InScene"
def load_pipeline():
"""Load the base FLUX Kontext pipeline"""
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
global pipeline
if pipeline is None:
print("Loading FLUX Kontext pipeline...")
try:
# Try FluxImg2ImgPipeline first
pipeline = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=dtype,
token=os.environ.get("HF_TOKEN"),
).to('cuda')
pipeline.load_lora_weights(
BACKGROUND_LORA_REPO,
token=os.environ.get("HF_TOKEN"),
adapter_name="background_lora"
)
pipeline.set_adapters(["background_lora"], adapter_weights=[0.6])
print("Pipeline loaded successfully with FluxImg2ImgPipeline!")
except Exception as e:
print(f"FluxImg2ImgPipeline failed: {e}")
print("Trying with regular FluxPipeline...")
# Fallback to regular FluxPipeline
pipeline = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=dtype,
token=os.environ.get("HF_TOKEN"),
).to('cuda')
print("Pipeline loaded successfully with FluxPipeline!")
return pipeline
def download_lora(style_name):
"""Download LoRA weights if not already cached"""
if style_name == "None":
return None
lora_filename = STYLE_TYPE_LORA_DICT[style_name]
local_path = f"./LoRAs/{lora_filename}"
if not os.path.exists(local_path):
print(f"Downloading LoRA for {style_name}...")
os.makedirs("./LoRAs", exist_ok=True)
hf_hub_download(
repo_id="Owen777/Kontext-Style-Loras",
filename=lora_filename,
local_dir="./LoRAs"
)
print(f"LoRA downloaded: {local_path}")
return local_path
@spaces.GPU
def generate_styled_image(
input_image,
input_base64,
style_name,
custom_prompt="",
num_inference_steps=24,
guidance_scale=7.5,
width=1024,
height=1024,
seed=-1,
):
"""Generate styled image using FLUX Kontext with LoRA"""
global pipeline, current_lora
try:
# Load pipeline if not loaded
pipeline = load_pipeline()
# Handle LoRA loading based on style selection
if current_lora != style_name:
# If switching to "None", just use background LoRA
if style_name == "None":
# Unload style LoRA if any was loaded
if current_lora is not None and current_lora != "None":
try:
pipeline.delete_adapters(["style_lora"])
except:
pass
# Set only background LoRA
pipeline.set_adapters(["background_lora"], adapter_weights=[0.6])
current_lora = style_name
print("Using only background LoRA (no style applied)")
else:
# Download and load style LoRA
lora_path = download_lora(style_name)
# Remove previous style LoRA if any
if current_lora is not None and current_lora != "None":
try:
pipeline.delete_adapters(["style_lora"])
except:
pass
# Load new style LoRA
try:
pipeline.load_lora_weights(lora_path, adapter_name="style_lora")
# Set both background and style LoRAs
pipeline.set_adapters(["background_lora", "style_lora"], adapter_weights=[0.4, 1.0])
current_lora = style_name
print(f"Loaded style LoRA: {style_name}")
except Exception as e:
print(f"Error loading LoRA {style_name}: {str(e)}")
# Fallback to just background LoRA
pipeline.set_adapters(["background_lora"], adapter_weights=[0.6])
raise e
# Note: When style hasn't changed, adapters are already set correctly from previous call
# Prepare input image
# Normalize the image
if input_image is not None:
img = _to_pil(input_image) # will receive PIL from UI
elif input_base64:
# accept either raw b64 or data URL
b64 = input_base64
if b64.startswith("data:image"):
b64 = b64.split(",", 1)[1]
img = Image.open(io.BytesIO(base64.b64decode(b64))).convert("RGB")
else:
raise ValueError("Please provide an image (upload) or input_base64.")
# input_image = input_image.convert("RGB")
# Prepare prompt
if custom_prompt.strip():
prompt = custom_prompt
else:
prompt = f"Turn this image into the {style_name.replace('_', ' ')} style."
# Set seed for reproducibility
if seed != -1:
torch.manual_seed(seed)
# Generate image
print(f"Generating image with style: {style_name}")
print(f"Prompt: {prompt}")
# Generate image with proper error handling
try:
with torch.autocast("cuda", dtype=torch.bfloat16):
result = pipeline(
image=img,
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed) if seed != -1 else None
)
output_image = result.images[0]
# Validate the output image
if output_image is None:
raise ValueError("Generated image is None")
# Convert to RGB if needed and ensure it's valid
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# Additional validation - check if image has valid pixel values
img_array = np.array(output_image)
if np.any(np.isnan(img_array)) or np.any(np.isinf(img_array)):
print("Warning: Generated image contains invalid values, attempting to fix...")
# Clamp values to valid range
img_array = np.clip(img_array, 0, 255)
output_image = Image.fromarray(img_array.astype(np.uint8))
except Exception as generation_error:
print(f"Error during generation: {str(generation_error)}")
# Try with different parameters as fallback
print("Attempting generation with fallback parameters...")
with torch.autocast("cuda", dtype=torch.bfloat16):
result = pipeline(
image=img,
prompt=prompt,
height=height,
width=width,
num_inference_steps=max(15, num_inference_steps // 2),
guidance_scale=min(guidance_scale, 7.0),
)
output_image = result.images[0]
if output_image.mode != 'RGB':
output_image = output_image.convert('RGB')
# Clean up GPU memory
torch.cuda.empty_cache()
gc.collect()
return output_image
except Exception as e:
print(f"Error generating image: {str(e)}")
return None
# Custom CSS for better UI
css = """
.gradio-container {
font-family: 'Helvetica Neue', Arial, sans-serif;
}
.title {
text-align: center;
font-size: 2.5em;
font-weight: bold;
margin-bottom: 1em;
color: #2c3e50;
}
.subtitle {
text-align: center;
font-size: 1.2em;
color: #7f8c8d;
margin-bottom: 2em;
}
"""
# Create Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.HTML('<div class="title">🎨 FLUX Kontext Style Transfer</div>')
gr.HTML('<div class="subtitle">Transform your images with 20+ artistic styles using LoRA adapters</div>')
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Input")
input_image = gr.Image(
label="Upload Image",
height=400,
type="pil",
)
style_dropdown = gr.Dropdown(
choices=list(STYLE_TYPE_LORA_DICT.keys()),
label="Choose Style",
value="None",
interactive=True
)
custom_prompt = gr.Textbox(
label="Custom Prompt (Discouraged when selecting a style)",
placeholder="Leave empty to use default style prompt",
lines=2
)
input_base64 = gr.Textbox(
label="Base64 / data URL (optional, for API callers)",
placeholder="data:image/png;base64,... or raw base64"
)
with gr.Accordion("Advanced Settings", open=False):
num_inference_steps = gr.Slider(
minimum=10,
maximum=50,
value=24,
step=1,
label="Inference Steps"
)
guidance_scale = gr.Slider(
minimum=1.0,
maximum=20.0,
value=7.5,
step=0.1,
label="Guidance Scale"
)
# lora_strength = gr.Slider(
# minimum=0.1,
# maximum=2.0,
# value=1.0,
# step=0.1,
# label="LoRA Strength"
# )
# img2img_strength = gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.8,
# step=0.05,
# label="Transformation Strength"
# )
with gr.Row():
width = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Width"
)
height = gr.Slider(
minimum=512,
maximum=1536,
value=1024,
step=64,
label="Height"
)
seed = gr.Number(
label="Seed (-1 for random)",
value=-1,
precision=0
)
generate_btn = gr.Button("🎨 Generate Styled Image", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### Output")
output_image = gr.Image(
label="Styled Image",
height=400
)
# Example images
gr.Markdown("### Examples")
gr.Examples(
examples=[
["https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg", "", "None", "", 24, 7.5, 1024, 1024, -1],
["https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg", "", "Ghibli", "", 24, 7.5, 1024, 1024, -1],
["https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg", "", "Pixel", "", 24, 7.5, 1024, 1024, -1],
["https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg", "", "Van_Gogh", "", 24, 7.5, 1024, 1024, -1],
],
inputs=[input_image, input_base64, style_dropdown, custom_prompt, num_inference_steps, guidance_scale, width, height, seed],
outputs=[output_image],
fn=generate_styled_image,
cache_examples=False,
)
# Event handlers
generate_btn.click(
fn=generate_styled_image,
inputs=[
input_image,
input_base64,
style_dropdown,
custom_prompt,
num_inference_steps,
guidance_scale,
# lora_strength,
# img2img_strength,
width,
height,
seed
],
outputs=[output_image]
)
# Information section
with gr.Accordion("About", open=False):
gr.Markdown("""
### FLUX Kontext Style Transfer
This application uses the FLUX.1 Kontext model with dual LoRA adapters: a background LoRA for scene understanding and optional style LoRAs for artistic transformation.
**Available Styles:**
- **None**: Uses only the background LoRA for natural scene enhancement
- 3D Chibi, American Cartoon, Chinese Ink, Clay Toy
- Fabric, Ghibli, Irasutoya, Jojo, Oil Painting
- Pixel, Snoopy, Poly, LEGO, Origami
- Pop Art, Van Gogh, Paper Cutting, Line, Vector
- Picasso, Macaron, Rick & Morty
**Tips:**
- Upload high-quality images for best results
- Select "None" for natural scene enhancement without style transfer
- Try different style LoRAs for various artistic effects
- Use custom prompts for more specific styling
- Higher inference steps generally produce better quality
**Model:** [Owen777/Kontext-Style-Loras](https://huggingface.co/Owen777/Kontext-Style-Loras)
**Training Code:** [GitHub Repository](https://github.com/Owen718/Kontext-Lora-Trainer)
""")
if __name__ == "__main__":
demo.launch()
|