CompactAI's picture
Upload folder using huggingface_hub
6b1e7e2 verified
---
license: apache-2.0
tags:
- pruned
- python
- optimized
- wanda
base_model: Qwen/Qwen2.5-3B-Instruct
pipeline_tag: text-generation
---
# Qwen2.5-3B-Instruct-python-safe
> 🎯 **PYTHON-optimized** | πŸ“¦ **Safe** pruning | ⚑ **1% weights pruned**
This model is a **conservatively pruned** version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).
## Performance Comparison
| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| **Python** | 92.3% | 92.3% ⭐ | β†’ |
| Html | 40.0% | 40.0% | β†’ |
| Trivia | 100.0% | 100.0% | β†’ |
| Math | 100.0% | 100.0% | β†’ |
| Reasoning | 91.7% | 91.7% | β†’ |
| Medical | 64.3% | 64.3% | β†’ |
| Linux | 69.2% | 69.2% | β†’ |
| Writing | 54.5% | 54.5% | β†’ |
**Average**: 76.5% β†’ 76.5% (+0.0%)
**Python Retention**: 100.0%
![Comparison Graph](comparison_graph.png)
## Quick Start
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-safe")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-safe")
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Technical Details
| Property | Value |
|----------|-------|
| Base Model | [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) |
| Specialization | Python |
| Prune Mode | Safe |
| Weight Reduction | 1% weights pruned |
## License
This model inherits the license from the base model.