MODELING_23
This model is a fine-tuned version of openai/whisper-small on the abdouaziiz/full_wolof_normalized dataset. It achieves the following results on the evaluation set:
- Loss: 0.4923
- Wer: 0.2679
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 48000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 1.9983 | 0.2723 | 500 | 0.7120 | 0.6396 |
| 1.2974 | 0.5445 | 1000 | 0.6105 | 0.5783 |
| 1.1407 | 0.8168 | 1500 | 0.5547 | 0.5724 |
| 0.9514 | 1.0890 | 2000 | 0.5317 | 0.4652 |
| 0.7178 | 1.3613 | 2500 | 0.5096 | 0.4635 |
| 0.7264 | 1.6335 | 3000 | 0.4975 | 0.3532 |
| 0.7091 | 1.9058 | 3500 | 0.4781 | 0.3160 |
| 0.5207 | 2.1781 | 4000 | 0.4779 | 0.3010 |
| 0.4213 | 2.4503 | 4500 | 0.4792 | 0.4107 |
| 0.442 | 2.7226 | 5000 | 0.4751 | 0.3008 |
| 0.4337 | 2.9948 | 5500 | 0.4598 | 0.3062 |
| 0.2341 | 3.2671 | 6000 | 0.4918 | 0.3113 |
| 0.2406 | 3.5393 | 6500 | 0.4923 | 0.2679 |
| 0.2479 | 3.8116 | 7000 | 0.4866 | 0.2887 |
| 0.2078 | 4.0839 | 7500 | 0.5019 | 0.2913 |
| 0.1258 | 4.3561 | 8000 | 0.5140 | 0.2730 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.7.0+cu126
- Datasets 3.3.2
- Tokenizers 0.20.3
- Downloads last month
- 692
Model tree for abdouaziiz/MODELING_23
Base model
openai/whisper-smallEvaluation results
- Wer on abdouaziiz/full_wolof_normalizedself-reported0.268