Video-MAE: Optimized for Qualcomm Devices
Video MAE (Masked Auto Encoder) is a network for doing video classification that uses the ViT (Vision Transformer) backbone.
This is based on the implementation of Video-MAE found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit Video-MAE on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for Video-MAE on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.video_classification
Model Stats:
- Model checkpoint: Kinectics-400
- Input resolution: 224x224
- Number of parameters: 87.7M
- Model size (float): 335 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| Video-MAE | ONNX | float | Snapdragon® X Elite | 599.027 ms | 187 - 187 MB | NPU |
| Video-MAE | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 417.051 ms | 10 - 1193 MB | NPU |
| Video-MAE | ONNX | float | Qualcomm® QCS8550 (Proxy) | 572.814 ms | 0 - 217 MB | NPU |
| Video-MAE | ONNX | float | Qualcomm® QCS9075 | 672.39 ms | 9 - 21 MB | NPU |
| Video-MAE | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 439.593 ms | 1 - 971 MB | NPU |
| Video-MAE | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 594.011 ms | 1 - 977 MB | NPU |
| Video-MAE | QNN_DLC | float | Snapdragon® X Elite | 473.072 ms | 9 - 9 MB | NPU |
| Video-MAE | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 354.537 ms | 9 - 1124 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 1038.798 ms | 0 - 914 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 454.586 ms | 9 - 12 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® SA8775P | 485.216 ms | 0 - 956 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® QCS9075 | 515.489 ms | 11 - 22 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 579.173 ms | 9 - 1066 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® SA7255P | 1038.798 ms | 0 - 914 MB | NPU |
| Video-MAE | QNN_DLC | float | Qualcomm® SA8295P | 565.13 ms | 0 - 858 MB | NPU |
| Video-MAE | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 331.251 ms | 9 - 928 MB | NPU |
| Video-MAE | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 249.902 ms | 11 - 966 MB | NPU |
| Video-MAE | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 100.537 ms | 0 - 1169 MB | NPU |
| Video-MAE | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 5536.906 ms | 42 - 59 MB | CPU |
| Video-MAE | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 138.298 ms | 0 - 4 MB | NPU |
| Video-MAE | TFLITE | float | Qualcomm® SA8775P | 160.51 ms | 0 - 961 MB | NPU |
| Video-MAE | TFLITE | float | Qualcomm® QCS9075 | 172.102 ms | 0 - 207 MB | NPU |
| Video-MAE | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 298.251 ms | 0 - 1115 MB | NPU |
| Video-MAE | TFLITE | float | Qualcomm® SA7255P | 5536.906 ms | 42 - 59 MB | CPU |
| Video-MAE | TFLITE | float | Qualcomm® SA8295P | 214.16 ms | 0 - 912 MB | NPU |
| Video-MAE | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 74.663 ms | 0 - 962 MB | NPU |
| Video-MAE | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 60.822 ms | 0 - 954 MB | NPU |
License
- The license for the original implementation of Video-MAE can be found here.
References
- Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
