Spaces:
Runtime error
Runtime error
A newer version of the Gradio SDK is available:
6.5.0
Deployment Guide for FLUX Kontext Style Transfer Space
Quick Start
1. Create a New Hugging Face Space
- Go to Hugging Face Spaces
- Click "Create new Space"
- Choose:
- Space name:
flux-kontext-style-transfer(or your preferred name) - License: Apache 2.0
- SDK: Gradio
- Hardware: ZeroGPU (recommended) or T4 Medium
- Space name:
- Click "Create Space"
2. Upload Files
Upload all the files from this directory to your new Space:
app.py- Main application filerequirements.txt- Python dependenciesREADME.md- Space documentationconfig.py- Configuration settings.gitignore- Git ignore fileDockerfile- Docker configuration (optional)
3. Space Configuration
The Space should automatically start building once you upload the files. The README.md contains the necessary YAML frontmatter with the Space configuration.
4. Hardware Requirements
For optimal performance, use:
- ZeroGPU: Best for public spaces (free with queue)
- T4 Medium or Large: For consistent performance
- A10G Small or Medium: For faster inference
5. Environment Variables (Optional)
If you need to set environment variables:
- Go to your Space settings
- Add variables in the "Variables and secrets" section
- Common variables:
HF_TOKEN: Hugging Face token (if needed for private models)
File Structure
your-space/
βββ app.py # Main Gradio application
βββ requirements.txt # Python dependencies
βββ README.md # Space documentation with metadata
βββ config.py # Configuration settings
βββ .gitignore # Git ignore patterns
βββ Dockerfile # Docker configuration (optional)
βββ deploy.md # This deployment guide
Features Included
- Complete Gradio Interface: Ready-to-use web interface
- 20+ Style LoRAs: All styles from the original model
- GPU Optimization: Configured for ZeroGPU
- Memory Management: Efficient GPU memory usage
- Examples: Pre-loaded example images
- Advanced Settings: Customizable parameters
- Professional UI: Clean, modern interface
Customization Options
Adding New Styles
- Update
STYLE_TYPE_LORA_DICTinapp.py - Add new LoRA files to the model repository
- Update style descriptions in
config.py
UI Modifications
- Edit the CSS in
app.pyfor custom styling - Modify the Gradio layout in the interface section
- Add new components or remove existing ones
Performance Tuning
- Adjust default parameters in
config.py - Modify memory management settings
- Update hardware requirements in README.md
Troubleshooting
Common Issues
Out of Memory Errors
- Reduce default image size
- Enable CPU offloading in config
- Use smaller batch sizes
Slow Loading
- LoRAs are downloaded on first use
- Consider pre-downloading popular LoRAs
- Use faster hardware tier
Import Errors
- Check requirements.txt versions
- Ensure all dependencies are compatible
- Update to latest diffusers version
Performance Tips
- Use ZeroGPU for cost-effective deployment
- Cache LoRA files for faster loading
- Implement model compilation for speed
- Monitor GPU memory usage
Support
For issues with:
- Original Model: Contact Owen777
- Training Code: Check GitHub Repository
- Hugging Face Spaces: Use Community Forums
License
This deployment is under Apache 2.0 License, following the original model's licensing.