|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Train an Image Classifier |
|
|
|
|
|
This marimo notebook fine-tunes a Vision Transformer (ViT) for image classification. |
|
|
|
|
|
Two ways to run: |
|
|
- Tutorial: uvx marimo edit --sandbox train-image-classifier.py |
|
|
- Script: uv run train-image-classifier.py --dataset beans --output-repo user/my-model |
|
|
|
|
|
On HF Jobs (GPU): |
|
|
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \ |
|
|
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \ |
|
|
-- --dataset beans --output-repo user/beans-vit --epochs 5 |
|
|
""" |
|
|
|
|
|
import marimo |
|
|
|
|
|
__generated_with = "0.19.6" |
|
|
app = marimo.App(width="medium") |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(): |
|
|
import marimo as mo |
|
|
return (mo,) |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
# Train an Image Classifier |
|
|
|
|
|
This notebook fine-tunes a Vision Transformer (ViT) for image classification. |
|
|
|
|
|
**Two ways to run:** |
|
|
- **Tutorial**: `uvx marimo edit --sandbox train-image-classifier.py` |
|
|
- **Script**: `uv run train-image-classifier.py --dataset beans --output-repo user/my-model` |
|
|
|
|
|
The same code powers both experiences! |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Running on HF Jobs (GPU) |
|
|
|
|
|
This notebook can run on [Hugging Face Jobs](https://huggingface.co/docs/hub/jobs) for GPU training. |
|
|
No local GPU needed - just run: |
|
|
|
|
|
```bash |
|
|
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\ |
|
|
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\ |
|
|
-- --dataset beans --output-repo your-username/beans-vit --epochs 5 --push-to-hub |
|
|
``` |
|
|
|
|
|
**GPU Flavors:** |
|
|
| Flavor | GPU | VRAM | Best for | |
|
|
|--------|-----|------|----------| |
|
|
| `l4x1` | L4 | 24GB | Most fine-tuning tasks | |
|
|
| `a10gx1` | A10G | 24GB | Slightly faster than L4 | |
|
|
| `a100x1` | A100 | 40GB | Large models, big batches | |
|
|
|
|
|
**Key flags:** |
|
|
- `--secrets HF_TOKEN` - Passes your HF token for pushing models |
|
|
- `--` - Separates `hf jobs` args from script args |
|
|
- `--push-to-hub` - Actually pushes the model (otherwise just saves locally) |
|
|
|
|
|
**Tip:** Start with `beans` dataset and 1-3 epochs to test, then scale up! |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 1: Configuration |
|
|
|
|
|
Set up training parameters. In interactive mode, use the controls below. |
|
|
In script mode, pass command-line arguments. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
import argparse |
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Fine-tune ViT for image classification") |
|
|
parser.add_argument( |
|
|
"--dataset", |
|
|
default="beans", |
|
|
help="HF dataset name (must be image classification dataset)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--model", |
|
|
default="google/vit-base-patch16-224-in21k", |
|
|
help="Pretrained model to fine-tune", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output-repo", |
|
|
default=None, |
|
|
help="Where to push trained model (e.g., user/my-model)", |
|
|
) |
|
|
parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs") |
|
|
parser.add_argument("--batch-size", type=int, default=16, help="Batch size") |
|
|
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate") |
|
|
parser.add_argument( |
|
|
"--push-to-hub", |
|
|
action="store_true", |
|
|
default=False, |
|
|
help="Push model to Hub after training", |
|
|
) |
|
|
args, _ = parser.parse_known_args() |
|
|
|
|
|
|
|
|
dataset_input = mo.ui.text(value=args.dataset, label="Dataset") |
|
|
model_input = mo.ui.text(value=args.model, label="Model") |
|
|
output_input = mo.ui.text(value=args.output_repo or "", label="Output Repo") |
|
|
epochs_input = mo.ui.slider(1, 20, value=args.epochs, label="Epochs") |
|
|
batch_size_input = mo.ui.dropdown( |
|
|
options=["8", "16", "32", "64"], value=str(args.batch_size), label="Batch Size" |
|
|
) |
|
|
lr_input = mo.ui.dropdown( |
|
|
options=["1e-5", "2e-5", "5e-5", "1e-4"], |
|
|
value=f"{args.lr:.0e}".replace("e-0", "e-"), |
|
|
label="Learning Rate", |
|
|
) |
|
|
|
|
|
mo.vstack( |
|
|
[ |
|
|
mo.hstack([dataset_input, model_input]), |
|
|
mo.hstack([output_input]), |
|
|
mo.hstack([epochs_input, batch_size_input, lr_input]), |
|
|
] |
|
|
) |
|
|
return ( |
|
|
args, |
|
|
batch_size_input, |
|
|
dataset_input, |
|
|
epochs_input, |
|
|
lr_input, |
|
|
model_input, |
|
|
output_input, |
|
|
) |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _( |
|
|
args, |
|
|
batch_size_input, |
|
|
dataset_input, |
|
|
epochs_input, |
|
|
lr_input, |
|
|
model_input, |
|
|
output_input, |
|
|
): |
|
|
|
|
|
dataset_name = dataset_input.value or args.dataset |
|
|
model_name = model_input.value or args.model |
|
|
output_repo = output_input.value or args.output_repo |
|
|
num_epochs = epochs_input.value or args.epochs |
|
|
batch_size = int(batch_size_input.value) if batch_size_input.value else args.batch_size |
|
|
learning_rate = float(lr_input.value) if lr_input.value else args.lr |
|
|
|
|
|
print("Configuration:") |
|
|
print(f" Dataset: {dataset_name}") |
|
|
print(f" Model: {model_name}") |
|
|
print(f" Output: {output_repo or '(not pushing to Hub)'}") |
|
|
print(f" Epochs: {num_epochs}, Batch Size: {batch_size}, LR: {learning_rate}") |
|
|
return ( |
|
|
batch_size, |
|
|
dataset_name, |
|
|
learning_rate, |
|
|
model_name, |
|
|
num_epochs, |
|
|
output_repo, |
|
|
) |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 2: Load Dataset |
|
|
|
|
|
We'll load an image classification dataset from the Hub. |
|
|
The `beans` dataset is small (~1000 images) and trains quickly - perfect for learning! |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(dataset_name, mo): |
|
|
from datasets import load_dataset |
|
|
|
|
|
print(f"Loading dataset: {dataset_name}...") |
|
|
dataset = load_dataset(dataset_name) |
|
|
print(f"Train: {len(dataset['train']):,} samples") |
|
|
print(f"Test: {len(dataset['test']):,} samples") |
|
|
|
|
|
|
|
|
_features = dataset["train"].features |
|
|
label_column = "label" if "label" in _features else "labels" |
|
|
label_feature = _features[label_column] |
|
|
labels = label_feature.names if hasattr(label_feature, "names") else None |
|
|
num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"][label_column])) |
|
|
|
|
|
print(f"Label column: '{label_column}'") |
|
|
print(f"Labels ({num_labels}): {labels}") |
|
|
|
|
|
mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**") |
|
|
return dataset, label_column, labels, num_labels |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(dataset, label_column, labels, mo): |
|
|
|
|
|
import base64 as _base64 |
|
|
from io import BytesIO as _BytesIO |
|
|
|
|
|
def _image_to_base64(img, max_size=150): |
|
|
"""Convert PIL image to base64 for HTML display.""" |
|
|
_img_copy = img.copy() |
|
|
_img_copy.thumbnail((max_size, max_size)) |
|
|
_buffered = _BytesIO() |
|
|
_img_copy.save(_buffered, format="PNG") |
|
|
return _base64.b64encode(_buffered.getvalue()).decode() |
|
|
|
|
|
|
|
|
_samples = dataset["train"].shuffle(seed=42).select(range(6)) |
|
|
|
|
|
_images_html = [] |
|
|
for _sample in _samples: |
|
|
_img_b64 = _image_to_base64(_sample["image"]) |
|
|
_label_name = labels[_sample[label_column]] if labels else _sample[label_column] |
|
|
_images_html.append( |
|
|
f""" |
|
|
<div style="text-align: center; margin: 5px;"> |
|
|
<img src="data:image/png;base64,{_img_b64}" style="border-radius: 8px;"/> |
|
|
<br/><small>{_label_name}</small> |
|
|
</div> |
|
|
""" |
|
|
) |
|
|
|
|
|
mo.md(f""" |
|
|
### Sample Images |
|
|
<div style="display: flex; flex-wrap: wrap; gap: 10px;"> |
|
|
{"".join(_images_html)} |
|
|
</div> |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 3: Prepare Model and Processor |
|
|
|
|
|
We load a pretrained Vision Transformer and its image processor. |
|
|
The processor handles resizing and normalization to match the model's training. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(labels, model_name, num_labels): |
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
|
|
|
|
print(f"Loading model: {model_name}...") |
|
|
|
|
|
|
|
|
image_processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
print(f"Image size: {image_processor.size}") |
|
|
|
|
|
|
|
|
label2id = {label: i for i, label in enumerate(labels)} if labels else None |
|
|
id2label = {i: label for i, label in enumerate(labels)} if labels else None |
|
|
|
|
|
model = AutoModelForImageClassification.from_pretrained( |
|
|
model_name, |
|
|
num_labels=num_labels, |
|
|
label2id=label2id, |
|
|
id2label=id2label, |
|
|
ignore_mismatched_sizes=True, |
|
|
) |
|
|
print(f"Model loaded with {num_labels} output classes") |
|
|
return id2label, image_processor, model |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 4: Preprocess Data |
|
|
|
|
|
Apply the image processor to convert images into tensors suitable for the model. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(dataset, image_processor, label_column): |
|
|
def preprocess(examples): |
|
|
"""Apply image processor to batch of images.""" |
|
|
images = [img.convert("RGB") for img in examples["image"]] |
|
|
inputs = image_processor(images, return_tensors="pt") |
|
|
inputs["labels"] = examples[label_column] |
|
|
return inputs |
|
|
|
|
|
print("Preprocessing dataset...") |
|
|
processed_dataset = dataset.with_transform(preprocess) |
|
|
print("Preprocessing complete (transforms applied lazily)") |
|
|
return (processed_dataset,) |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 5: Training |
|
|
|
|
|
We use the Hugging Face Trainer for a clean training loop with built-in logging. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _( |
|
|
batch_size, |
|
|
learning_rate, |
|
|
model, |
|
|
num_epochs, |
|
|
output_repo, |
|
|
processed_dataset, |
|
|
): |
|
|
import evaluate |
|
|
import numpy as np |
|
|
from transformers import Trainer, TrainingArguments |
|
|
|
|
|
|
|
|
accuracy_metric = evaluate.load("accuracy") |
|
|
|
|
|
def compute_metrics(eval_pred): |
|
|
predictions, labels = eval_pred |
|
|
predictions = np.argmax(predictions, axis=1) |
|
|
return accuracy_metric.compute(predictions=predictions, references=labels) |
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
|
output_dir="./image-classifier-output", |
|
|
num_train_epochs=num_epochs, |
|
|
per_device_train_batch_size=batch_size, |
|
|
per_device_eval_batch_size=batch_size, |
|
|
learning_rate=learning_rate, |
|
|
eval_strategy="epoch", |
|
|
save_strategy="epoch", |
|
|
logging_steps=10, |
|
|
load_best_model_at_end=True, |
|
|
metric_for_best_model="accuracy", |
|
|
push_to_hub=bool(output_repo), |
|
|
hub_model_id=output_repo if output_repo else None, |
|
|
remove_unused_columns=False, |
|
|
report_to="none", |
|
|
) |
|
|
|
|
|
|
|
|
trainer = Trainer( |
|
|
model=model, |
|
|
args=training_args, |
|
|
train_dataset=processed_dataset["train"], |
|
|
eval_dataset=processed_dataset["test"], |
|
|
compute_metrics=compute_metrics, |
|
|
) |
|
|
|
|
|
print(f"Starting training for {num_epochs} epochs...") |
|
|
return (trainer,) |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(trainer): |
|
|
|
|
|
train_result = trainer.train() |
|
|
print("\nTraining complete!") |
|
|
print(f" Total steps: {train_result.global_step}") |
|
|
print(f" Training loss: {train_result.training_loss:.4f}") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 6: Evaluation |
|
|
|
|
|
Let's see how well our model performs on the test set. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(trainer): |
|
|
|
|
|
eval_results = trainer.evaluate() |
|
|
print("\nEvaluation Results:") |
|
|
print(f" Accuracy: {eval_results['eval_accuracy']:.2%}") |
|
|
print(f" Loss: {eval_results['eval_loss']:.4f}") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(dataset, id2label, image_processor, label_column, mo, model): |
|
|
import torch |
|
|
import base64 as _b64 |
|
|
from io import BytesIO as _BIO |
|
|
|
|
|
|
|
|
model.eval() |
|
|
_test_samples = dataset["test"].shuffle(seed=42).select(range(4)) |
|
|
|
|
|
_prediction_html = [] |
|
|
for _sample in _test_samples: |
|
|
_img = _sample["image"].convert("RGB") |
|
|
_inputs = image_processor(_img, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
_outputs = model(**_inputs) |
|
|
_pred_idx = _outputs.logits.argmax(-1).item() |
|
|
|
|
|
_true_idx = _sample[label_column] |
|
|
_true_label = id2label[_true_idx] if id2label else _true_idx |
|
|
_pred_label = id2label[_pred_idx] if id2label else _pred_idx |
|
|
_correct = "correct" if _pred_idx == _true_idx else "wrong" |
|
|
|
|
|
|
|
|
_img_copy = _img.copy() |
|
|
_img_copy.thumbnail((120, 120)) |
|
|
_buffered = _BIO() |
|
|
_img_copy.save(_buffered, format="PNG") |
|
|
_img_b64 = _b64.b64encode(_buffered.getvalue()).decode() |
|
|
|
|
|
_border_color = "#4ade80" if _correct == "correct" else "#f87171" |
|
|
_prediction_html.append( |
|
|
f""" |
|
|
<div style="text-align: center; margin: 5px; padding: 10px; border: 2px solid {_border_color}; border-radius: 8px;"> |
|
|
<img src="data:image/png;base64,{_img_b64}" style="border-radius: 4px;"/> |
|
|
<br/><small>True: <b>{_true_label}</b></small> |
|
|
<br/><small>Pred: <b>{_pred_label}</b></small> |
|
|
</div> |
|
|
""" |
|
|
) |
|
|
|
|
|
mo.md(f""" |
|
|
### Sample Predictions |
|
|
<div style="display: flex; flex-wrap: wrap; gap: 10px;"> |
|
|
{"".join(_prediction_html)} |
|
|
</div> |
|
|
<small>Green border = correct, Red border = wrong</small> |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Step 7: Push to Hub |
|
|
|
|
|
If you specified `--output-repo`, the model will be pushed to the Hugging Face Hub. |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(args, output_repo, trainer): |
|
|
if output_repo and args.push_to_hub: |
|
|
print(f"Pushing model to: https://huggingface.co/{output_repo}") |
|
|
trainer.push_to_hub() |
|
|
print("Model pushed successfully!") |
|
|
elif output_repo: |
|
|
print("Model saved locally. To push to Hub, add --push-to-hub flag.") |
|
|
print(" Or run: trainer.push_to_hub()") |
|
|
else: |
|
|
print("No output repo specified. Model saved locally to ./image-classifier-output") |
|
|
print("To push to Hub, run with: --output-repo your-username/model-name --push-to-hub") |
|
|
return |
|
|
|
|
|
|
|
|
@app.cell |
|
|
def _(mo): |
|
|
mo.md(""" |
|
|
## Next Steps |
|
|
|
|
|
### Try different datasets |
|
|
- `food101` - 101 food categories (75k train images) |
|
|
- `cifar10` - 10 classes of objects (50k train images) |
|
|
- `oxford_flowers102` - 102 flower species |
|
|
- `fashion_mnist` - Clothing items (grayscale) |
|
|
|
|
|
### Try different models |
|
|
- `microsoft/resnet-50` - Classic CNN architecture |
|
|
- `facebook/deit-base-patch16-224` - Data-efficient ViT |
|
|
- `google/vit-large-patch16-224` - Larger ViT (needs more VRAM) |
|
|
|
|
|
### Scale up with HF Jobs |
|
|
|
|
|
```bash |
|
|
# Train on food101 with more epochs |
|
|
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\ |
|
|
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\ |
|
|
-- --dataset food101 --epochs 10 --batch-size 32 \\ |
|
|
--output-repo your-username/food101-vit --push-to-hub |
|
|
``` |
|
|
|
|
|
**More UV scripts**: [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts) |
|
|
""") |
|
|
return |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
app.run() |
|
|
|