marimo / train-image-classifier.py
davanstrien's picture
davanstrien HF Staff
Handle both 'label' and 'labels' column names in datasets
2a3a1cc
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "datasets",
# "transformers",
# "torch",
# "torchvision",
# "huggingface-hub",
# "evaluate",
# "accelerate",
# "scikit-learn",
# ]
# ///
"""
Train an Image Classifier
This marimo notebook fine-tunes a Vision Transformer (ViT) for image classification.
Two ways to run:
- Tutorial: uvx marimo edit --sandbox train-image-classifier.py
- Script: uv run train-image-classifier.py --dataset beans --output-repo user/my-model
On HF Jobs (GPU):
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \
-- --dataset beans --output-repo user/beans-vit --epochs 5
"""
import marimo
__generated_with = "0.19.6"
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _(mo):
mo.md("""
# Train an Image Classifier
This notebook fine-tunes a Vision Transformer (ViT) for image classification.
**Two ways to run:**
- **Tutorial**: `uvx marimo edit --sandbox train-image-classifier.py`
- **Script**: `uv run train-image-classifier.py --dataset beans --output-repo user/my-model`
The same code powers both experiences!
""")
return
@app.cell
def _(mo):
mo.md("""
## Running on HF Jobs (GPU)
This notebook can run on [Hugging Face Jobs](https://huggingface.co/docs/hub/jobs) for GPU training.
No local GPU needed - just run:
```bash
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\
-- --dataset beans --output-repo your-username/beans-vit --epochs 5 --push-to-hub
```
**GPU Flavors:**
| Flavor | GPU | VRAM | Best for |
|--------|-----|------|----------|
| `l4x1` | L4 | 24GB | Most fine-tuning tasks |
| `a10gx1` | A10G | 24GB | Slightly faster than L4 |
| `a100x1` | A100 | 40GB | Large models, big batches |
**Key flags:**
- `--secrets HF_TOKEN` - Passes your HF token for pushing models
- `--` - Separates `hf jobs` args from script args
- `--push-to-hub` - Actually pushes the model (otherwise just saves locally)
**Tip:** Start with `beans` dataset and 1-3 epochs to test, then scale up!
""")
return
@app.cell
def _(mo):
mo.md("""
## Step 1: Configuration
Set up training parameters. In interactive mode, use the controls below.
In script mode, pass command-line arguments.
""")
return
@app.cell
def _(mo):
import argparse
# Parse CLI args (works in both modes)
parser = argparse.ArgumentParser(description="Fine-tune ViT for image classification")
parser.add_argument(
"--dataset",
default="beans",
help="HF dataset name (must be image classification dataset)",
)
parser.add_argument(
"--model",
default="google/vit-base-patch16-224-in21k",
help="Pretrained model to fine-tune",
)
parser.add_argument(
"--output-repo",
default=None,
help="Where to push trained model (e.g., user/my-model)",
)
parser.add_argument("--epochs", type=int, default=3, help="Number of training epochs")
parser.add_argument("--batch-size", type=int, default=16, help="Batch size")
parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
parser.add_argument(
"--push-to-hub",
action="store_true",
default=False,
help="Push model to Hub after training",
)
args, _ = parser.parse_known_args()
# Interactive controls (shown in notebook mode)
dataset_input = mo.ui.text(value=args.dataset, label="Dataset")
model_input = mo.ui.text(value=args.model, label="Model")
output_input = mo.ui.text(value=args.output_repo or "", label="Output Repo")
epochs_input = mo.ui.slider(1, 20, value=args.epochs, label="Epochs")
batch_size_input = mo.ui.dropdown(
options=["8", "16", "32", "64"], value=str(args.batch_size), label="Batch Size"
)
lr_input = mo.ui.dropdown(
options=["1e-5", "2e-5", "5e-5", "1e-4"],
value=f"{args.lr:.0e}".replace("e-0", "e-"),
label="Learning Rate",
)
mo.vstack(
[
mo.hstack([dataset_input, model_input]),
mo.hstack([output_input]),
mo.hstack([epochs_input, batch_size_input, lr_input]),
]
)
return (
args,
batch_size_input,
dataset_input,
epochs_input,
lr_input,
model_input,
output_input,
)
@app.cell
def _(
args,
batch_size_input,
dataset_input,
epochs_input,
lr_input,
model_input,
output_input,
):
# Resolve values (interactive takes precedence)
dataset_name = dataset_input.value or args.dataset
model_name = model_input.value or args.model
output_repo = output_input.value or args.output_repo
num_epochs = epochs_input.value or args.epochs
batch_size = int(batch_size_input.value) if batch_size_input.value else args.batch_size
learning_rate = float(lr_input.value) if lr_input.value else args.lr
print("Configuration:")
print(f" Dataset: {dataset_name}")
print(f" Model: {model_name}")
print(f" Output: {output_repo or '(not pushing to Hub)'}")
print(f" Epochs: {num_epochs}, Batch Size: {batch_size}, LR: {learning_rate}")
return (
batch_size,
dataset_name,
learning_rate,
model_name,
num_epochs,
output_repo,
)
@app.cell
def _(mo):
mo.md("""
## Step 2: Load Dataset
We'll load an image classification dataset from the Hub.
The `beans` dataset is small (~1000 images) and trains quickly - perfect for learning!
""")
return
@app.cell
def _(dataset_name, mo):
from datasets import load_dataset
print(f"Loading dataset: {dataset_name}...")
dataset = load_dataset(dataset_name)
print(f"Train: {len(dataset['train']):,} samples")
print(f"Test: {len(dataset['test']):,} samples")
# Get label column name (datasets use 'label' or 'labels')
_features = dataset["train"].features
label_column = "label" if "label" in _features else "labels"
label_feature = _features[label_column]
labels = label_feature.names if hasattr(label_feature, "names") else None
num_labels = label_feature.num_classes if hasattr(label_feature, "num_classes") else len(set(dataset["train"][label_column]))
print(f"Label column: '{label_column}'")
print(f"Labels ({num_labels}): {labels}")
mo.md(f"**Loaded {len(dataset['train']):,} training samples with {num_labels} classes**")
return dataset, label_column, labels, num_labels
@app.cell
def _(dataset, label_column, labels, mo):
# Show sample images (notebook mode only)
import base64 as _base64
from io import BytesIO as _BytesIO
def _image_to_base64(img, max_size=150):
"""Convert PIL image to base64 for HTML display."""
_img_copy = img.copy()
_img_copy.thumbnail((max_size, max_size))
_buffered = _BytesIO()
_img_copy.save(_buffered, format="PNG")
return _base64.b64encode(_buffered.getvalue()).decode()
# Get 6 sample images with different labels
_samples = dataset["train"].shuffle(seed=42).select(range(6))
_images_html = []
for _sample in _samples:
_img_b64 = _image_to_base64(_sample["image"])
_label_name = labels[_sample[label_column]] if labels else _sample[label_column]
_images_html.append(
f"""
<div style="text-align: center; margin: 5px;">
<img src="data:image/png;base64,{_img_b64}" style="border-radius: 8px;"/>
<br/><small>{_label_name}</small>
</div>
"""
)
mo.md(f"""
### Sample Images
<div style="display: flex; flex-wrap: wrap; gap: 10px;">
{"".join(_images_html)}
</div>
""")
return
@app.cell
def _(mo):
mo.md("""
## Step 3: Prepare Model and Processor
We load a pretrained Vision Transformer and its image processor.
The processor handles resizing and normalization to match the model's training.
""")
return
@app.cell
def _(labels, model_name, num_labels):
from transformers import AutoImageProcessor, AutoModelForImageClassification
print(f"Loading model: {model_name}...")
# Load image processor
image_processor = AutoImageProcessor.from_pretrained(model_name)
print(f"Image size: {image_processor.size}")
# Load model with correct number of labels
label2id = {label: i for i, label in enumerate(labels)} if labels else None
id2label = {i: label for i, label in enumerate(labels)} if labels else None
model = AutoModelForImageClassification.from_pretrained(
model_name,
num_labels=num_labels,
label2id=label2id,
id2label=id2label,
ignore_mismatched_sizes=True, # Classification head will be different
)
print(f"Model loaded with {num_labels} output classes")
return id2label, image_processor, model
@app.cell
def _(mo):
mo.md("""
## Step 4: Preprocess Data
Apply the image processor to convert images into tensors suitable for the model.
""")
return
@app.cell
def _(dataset, image_processor, label_column):
def preprocess(examples):
"""Apply image processor to batch of images."""
images = [img.convert("RGB") for img in examples["image"]]
inputs = image_processor(images, return_tensors="pt")
inputs["labels"] = examples[label_column] # Trainer expects 'labels'
return inputs
print("Preprocessing dataset...")
processed_dataset = dataset.with_transform(preprocess)
print("Preprocessing complete (transforms applied lazily)")
return (processed_dataset,)
@app.cell
def _(mo):
mo.md("""
## Step 5: Training
We use the Hugging Face Trainer for a clean training loop with built-in logging.
""")
return
@app.cell
def _(
batch_size,
learning_rate,
model,
num_epochs,
output_repo,
processed_dataset,
):
import evaluate
import numpy as np
from transformers import Trainer, TrainingArguments
# Load accuracy metric
accuracy_metric = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return accuracy_metric.compute(predictions=predictions, references=labels)
# Training arguments
training_args = TrainingArguments(
output_dir="./image-classifier-output",
num_train_epochs=num_epochs,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
learning_rate=learning_rate,
eval_strategy="epoch",
save_strategy="epoch",
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
push_to_hub=bool(output_repo),
hub_model_id=output_repo if output_repo else None,
remove_unused_columns=False, # Keep image column for transforms
report_to="none", # Disable wandb/tensorboard for simplicity
)
# Create trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=processed_dataset["train"],
eval_dataset=processed_dataset["test"],
compute_metrics=compute_metrics,
)
print(f"Starting training for {num_epochs} epochs...")
return (trainer,)
@app.cell
def _(trainer):
# Run training
train_result = trainer.train()
print("\nTraining complete!")
print(f" Total steps: {train_result.global_step}")
print(f" Training loss: {train_result.training_loss:.4f}")
return
@app.cell
def _(mo):
mo.md("""
## Step 6: Evaluation
Let's see how well our model performs on the test set.
""")
return
@app.cell
def _(trainer):
# Evaluate on test set
eval_results = trainer.evaluate()
print("\nEvaluation Results:")
print(f" Accuracy: {eval_results['eval_accuracy']:.2%}")
print(f" Loss: {eval_results['eval_loss']:.4f}")
return
@app.cell
def _(dataset, id2label, image_processor, label_column, mo, model):
import torch
import base64 as _b64
from io import BytesIO as _BIO
# Show some predictions (notebook mode)
model.eval()
_test_samples = dataset["test"].shuffle(seed=42).select(range(4))
_prediction_html = []
for _sample in _test_samples:
_img = _sample["image"].convert("RGB")
_inputs = image_processor(_img, return_tensors="pt")
with torch.no_grad():
_outputs = model(**_inputs)
_pred_idx = _outputs.logits.argmax(-1).item()
_true_idx = _sample[label_column]
_true_label = id2label[_true_idx] if id2label else _true_idx
_pred_label = id2label[_pred_idx] if id2label else _pred_idx
_correct = "correct" if _pred_idx == _true_idx else "wrong"
# Convert image for display
_img_copy = _img.copy()
_img_copy.thumbnail((120, 120))
_buffered = _BIO()
_img_copy.save(_buffered, format="PNG")
_img_b64 = _b64.b64encode(_buffered.getvalue()).decode()
_border_color = "#4ade80" if _correct == "correct" else "#f87171"
_prediction_html.append(
f"""
<div style="text-align: center; margin: 5px; padding: 10px; border: 2px solid {_border_color}; border-radius: 8px;">
<img src="data:image/png;base64,{_img_b64}" style="border-radius: 4px;"/>
<br/><small>True: <b>{_true_label}</b></small>
<br/><small>Pred: <b>{_pred_label}</b></small>
</div>
"""
)
mo.md(f"""
### Sample Predictions
<div style="display: flex; flex-wrap: wrap; gap: 10px;">
{"".join(_prediction_html)}
</div>
<small>Green border = correct, Red border = wrong</small>
""")
return
@app.cell
def _(mo):
mo.md("""
## Step 7: Push to Hub
If you specified `--output-repo`, the model will be pushed to the Hugging Face Hub.
""")
return
@app.cell
def _(args, output_repo, trainer):
if output_repo and args.push_to_hub:
print(f"Pushing model to: https://huggingface.co/{output_repo}")
trainer.push_to_hub()
print("Model pushed successfully!")
elif output_repo:
print("Model saved locally. To push to Hub, add --push-to-hub flag.")
print(" Or run: trainer.push_to_hub()")
else:
print("No output repo specified. Model saved locally to ./image-classifier-output")
print("To push to Hub, run with: --output-repo your-username/model-name --push-to-hub")
return
@app.cell
def _(mo):
mo.md("""
## Next Steps
### Try different datasets
- `food101` - 101 food categories (75k train images)
- `cifar10` - 10 classes of objects (50k train images)
- `oxford_flowers102` - 102 flower species
- `fashion_mnist` - Clothing items (grayscale)
### Try different models
- `microsoft/resnet-50` - Classic CNN architecture
- `facebook/deit-base-patch16-224` - Data-efficient ViT
- `google/vit-large-patch16-224` - Larger ViT (needs more VRAM)
### Scale up with HF Jobs
```bash
# Train on food101 with more epochs
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \\
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \\
-- --dataset food101 --epochs 10 --batch-size 32 \\
--output-repo your-username/food101-vit --push-to-hub
```
**More UV scripts**: [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts)
""")
return
if __name__ == "__main__":
app.run()